Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multireference Alignment is Easier with an Aperiodic Translation Distribution (1710.02793v3)

Published 8 Oct 2017 in cs.IT and math.IT

Abstract: In the multireference alignment model, a signal is observed by the action of a random circular translation and the addition of Gaussian noise. The goal is to recover the signal's orbit by accessing multiple independent observations. Of particular interest is the sample complexity, i.e., the number of observations/samples needed in terms of the signal-to-noise ratio (the signal energy divided by the noise variance) in order to drive the mean-square error (MSE) to zero. Previous work showed that if the translations are drawn from the uniform distribution, then, in the low SNR regime, the sample complexity of the problem scales as $\omega(1/\text{SNR}3)$. In this work, using a generalization of the Chapman--Robbins bound for orbits and expansions of the $\chi2$ divergence at low SNR, we show that in the same regime the sample complexity for any aperiodic translation distribution scales as $\omega(1/\text{SNR}2)$. This rate is achieved by a simple spectral algorithm. We propose two additional algorithms based on non-convex optimization and expectation-maximization. We also draw a connection between the multireference alignment problem and the spiked covariance model.

Citations (53)

Summary

We haven't generated a summary for this paper yet.