Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Note on "The Complexity of Counting Surjective Homomorphisms and Compactions" (1710.01712v1)

Published 4 Oct 2017 in cs.CC

Abstract: Focke, Goldberg, and \v{Z}ivn\'y (arXiv 2017) prove a complexity dichotomy for the problem of counting surjective homomorphisms from a large input graph G without loops to a fixed graph H that may have loops. In this note, we give a short proof of a weaker result: Namely, we only prove the #P-hardness of the more general problem in which G may have loops. Our proof is an application of a powerful framework of Lov\'asz (2012), and it is analogous to proofs of Curticapean, Dell, and Marx (STOC 2017) who studied the "dual" problem in which the pattern graph G is small and the host graph H is the input. Independently, Chen (arXiv 2017) used Lov\'asz's framework to prove a complexity dichotomy for counting surjective homomorphisms to fixed finite structures.

Citations (3)

Summary

We haven't generated a summary for this paper yet.