Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Calculation of Regular Simplex Gradients (1710.01427v2)

Published 4 Oct 2017 in math.OC

Abstract: Simplex gradients are an essential feature of many derivative free optimization algorithms, and can be employed, for example, as part of the process of defining a direction of search, or as part of a termination criterion. The calculation of a general simplex gradient in $\mathbb{R}n$ can be computationally expensive, and often requires an overhead operation count of $\mathcal{O}(n3)$ and in some algorithms a storage overhead of $\mathcal{O}(n2)$. In this work we demonstrate that the linear algebra overhead and storage costs can be reduced, both to $\mathcal{O}(n)$, when the simplex employed is regular and appropriately aligned. We also demonstrate that a second order gradient approximation can be obtained cheaply from a combination of two, first order (appropriately aligned) regular simplex gradients. Moreover, we show that, for an arbitrarily aligned regular simplex, the gradient can be computed in only $\mathcal{O}(n2)$ operations.

Summary

We haven't generated a summary for this paper yet.