Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new class of efficient and robust energy stable schemes for gradient flows (1710.01331v1)

Published 3 Oct 2017 in math.NA

Abstract: We propose a new numerical technique to deal with nonlinear terms in gradient flows. By introducing a scalar auxiliary variable (SAV), we construct efficient and robust energy stable schemes for a large class of gradient flows. The SAV approach is not restricted to specific forms of the nonlinear part of the free energy, and only requires to solve {\it decoupled} linear equations with {\it constant coefficients}. We use this technique to deal with several challenging applications which can not be easily handled by existing approaches, and present convincing numerical results to show that our schemes are not only much more efficient and easy to implement, but can also better capture the physical properties in these models. Based on this SAV approach, we can construct unconditionally second-order energy stable schemes; and we can easily construct even third or fourth order BDF schemes, although not unconditionally stable, which are very robust in practice. In particular, when coupled with an adaptive time stepping strategy, the SAV approach can be extremely efficient and accurate.

Summary

We haven't generated a summary for this paper yet.