Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wall-crossing formulae and strong piecewise polynomiality for mixed Grothendieck dessins d'enfant, monotone, and simple double Hurwitz numbers (1710.01047v2)

Published 3 Oct 2017 in math.AG

Abstract: We derive explicit formulae for the generating series of mixed Grothendieck dessins d'enfant/monotone/simple Hurwitz numbers, via the semi-infinite wedge formalism. This reveals the strong piecewise polynomiality in the sense of Goulden-Jackson-Vakil, generalising a result of Johnson, and provides a new explicit proof of the piecewise polynomiality of the mixed case. Moreover, we derive wall-crossing formulae for the mixed case. These statements specialise to any of the three types of Hurwitz numbers, and to the mixed case of any pair.

Summary

We haven't generated a summary for this paper yet.