Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 106 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 228 tok/s Pro
2000 character limit reached

Distance-based Depths for Directional Data (1710.00080v2)

Published 29 Sep 2017 in math.ST and stat.TH

Abstract: Directional data are constrained to lie on the unit sphere of~$\mathbb{R}q$ for some~$q\geq 2$. To address the lack of a natural ordering for such data, depth functions have been defined on spheres. However, the depths available either lack flexibility or are so computationally expensive that they can only be used for very small dimensions~$q$. In this work, we improve on this by introducing a class of distance-based depths for directional data. Irrespective of the distance adopted, these depths can easily be computed in high dimensions too. We derive the main structural properties of the proposed depths and study how they depend on the distance used. We discuss the asymptotic and robustness properties of the corresponding deepest points. We show the practical relevance of the proposed depths in two applications, related to (i) spherical location estimation and (ii) supervised classification. For both problems, we show through simulation studies that distance-based depths have strong advantages over their competitors.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.