Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Computation of Graph Edit Distance (1709.10305v1)

Published 29 Sep 2017 in cs.DS

Abstract: The graph edit distance (GED) is a well-established distance measure widely used in many applications. However, existing methods for the GED computation suffer from several drawbacks including oversized search space, huge memory consumption, and lots of expensive backtracking. In this paper, we present BSS_GED, a novel vertex-based mapping method for the GED computation. First, we create a small search space by reducing the number of invalid and redundant mappings involved in the GED computation. Then, we utilize beam-stack search combined with two heuristics to efficiently compute GED, achieving a flexible trade-off between available memory and expensive backtracking. Extensive experiments demonstrate that BSS GED is highly efficient for the GED computation on sparse as well as dense graphs and outperforms the state-of-the-art GED methods. In addition, we also apply BSS_GED to the graph similarity search problem and the practical results confirm its efficiency.

Citations (3)

Summary

We haven't generated a summary for this paper yet.