Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Possibilistic Fuzzy Local Information C-Means for Sonar Image Segmentation (1709.10180v1)

Published 28 Sep 2017 in cs.CV

Abstract: Side-look synthetic aperture sonar (SAS) can produce very high quality images of the sea-floor. When viewing this imagery, a human observer can often easily identify various sea-floor textures such as sand ripple, hard-packed sand, sea grass and rock. In this paper, we present the Possibilistic Fuzzy Local Information C-Means (PFLICM) approach to segment SAS imagery into sea-floor regions that exhibit these various natural textures. The proposed PFLICM method incorporates fuzzy and possibilistic clustering methods and leverages (local) spatial information to perform soft segmentation. Results are shown on several SAS scenes and compared to alternative segmentation approaches.

Citations (20)

Summary

We haven't generated a summary for this paper yet.