Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 205 tok/s Pro
2000 character limit reached

Estimation of Graphical Models using the $L_{1,2}$ Norm (1709.10038v2)

Published 28 Sep 2017 in econ.EM and stat.ME

Abstract: Gaussian graphical models are recently used in economics to obtain networks of dependence among agents. A widely-used estimator is the Graphical Lasso (GLASSO), which amounts to a maximum likelihood estimation regularized using the $L_{1,1}$ matrix norm on the precision matrix $\Omega$. The $L_{1,1}$ norm is a lasso penalty that controls for sparsity, or the number of zeros in $\Omega$. We propose a new estimator called Structured Graphical Lasso (SGLASSO) that uses the $L_{1,2}$ mixed norm. The use of the $L_{1,2}$ penalty controls for the structure of the sparsity in $\Omega$. We show that when the network size is fixed, SGLASSO is asymptotically equivalent to an infeasible GLASSO problem which prioritizes the sparsity-recovery of high-degree nodes. Monte Carlo simulation shows that SGLASSO outperforms GLASSO in terms of estimating the overall precision matrix and in terms of estimating the structure of the graphical model. In an empirical illustration using a classic firms' investment dataset, we obtain a network of firms' dependence that exhibits the core-periphery structure, with General Motors, General Electric and U.S. Steel forming the core group of firms.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.