Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-cocompact Group Actions and $π_1$-Semistability at Infinity (1709.09129v1)

Published 26 Sep 2017 in math.GR

Abstract: A finitely presented 1-ended group $G$ has {\it semistable fundamental group at infinity} if $G$ acts geometrically on a simply connected and locally compact ANR $Y$ having the property that any two proper rays in $Y$ are properly homotopic. This property of $Y$ captures a notion of connectivity at infinity stronger than "1-ended", and is in fact a feature of $G$, being independent of choices. It is a fundamental property in the homotopical study of finitely presented groups. While many important classes of groups have been shown to have semistable fundamental group at infinity, the question of whether every $G$ has this property has been a recognized open question for nearly forty years. In this paper we attack the problem by considering a proper {\it but non-cocompact} action of a group $J$ on such an $Y$. This $J$ would typically be a subgroup of infinite index in the geometrically acting over-group $G$; for example $J$ might be infinite cyclic or some other subgroup whose semistability properties are known. We divide the semistability property of $G$ into a $J$-part and a "perpendicular to $J$" part, and we analyze how these two parts fit together. Among other things, this analysis leads to a proof (in a companion paper) that a class of groups previously considered to be likely counter examples do in fact have the semistability property.

Summary

We haven't generated a summary for this paper yet.