2000 character limit reached
Locally free actions of groupoids and proper topological correspondences (1709.08938v1)
Published 26 Sep 2017 in math.OA
Abstract: Let $(G,\alpha)$ and $(H,\beta)$ be locally compact Hausdorff groupoids with Haar systems, and let $(X,\lambda)$ be a topological correspondence from $(G,\alpha)$ to $(H,\beta)$ which induce the ${C}*$-correspondence $\mathcal{H}(X)\colon {C}*(G,\alpha)\to {C}*(H,\beta)$. We give sufficient topological conditions which when satisfied the ${C}*$-correspondence $\mathcal{H}(X)$ is proper, that is, the ${C}*$-algebra ${C}*(G,\alpha)$ acts on the Hilbert ${C}*(H,\beta)$-module ${H}(X)$ via the comapct operators. Thus a proper topological correspondence produces an element in ${KK}({C}(G,\alpha),{C}^(H,\beta))$.