Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Telling Cause from Effect using MDL-based Local and Global Regression (1709.08915v1)

Published 26 Sep 2017 in stat.ML

Abstract: We consider the fundamental problem of inferring the causal direction between two univariate numeric random variables $X$ and $Y$ from observational data. The two-variable case is especially difficult to solve since it is not possible to use standard conditional independence tests between the variables. To tackle this problem, we follow an information theoretic approach based on Kolmogorov complexity and use the Minimum Description Length (MDL) principle to provide a practical solution. In particular, we propose a compression scheme to encode local and global functional relations using MDL-based regression. We infer $X$ causes $Y$ in case it is shorter to describe $Y$ as a function of $X$ than the inverse direction. In addition, we introduce Slope, an efficient linear-time algorithm that through thorough empirical evaluation on both synthetic and real world data we show outperforms the state of the art by a wide margin.

Citations (54)

Summary

We haven't generated a summary for this paper yet.