Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform boundedness principles for Sobolev maps into manifolds (1709.08565v1)

Published 25 Sep 2017 in math.FA and math.AP

Abstract: Given a connected Riemannian manifold $\mathcal{N}$, an (m)--dimensional Riemannian manifold $\mathcal{M}$ which is either compact or the Euclidean space, $p\in [1, +\infty)$ and $s\in (0,1]$, we establish, for the problems of surjectivity of the trace, of weak-bounded approximation, of lifting and of superposition, that qualitative properties satisfied by every map in a nonlinear Sobolev space $W{s,p}(\mathcal{M}, \mathcal{N})$ imply corresponding uniform quantitative bounds. This result is a nonlinear counterpart of the classical Banach--Steinhaus uniform boundedness principle in linear Banach spaces.

Summary

We haven't generated a summary for this paper yet.