Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Depth-First Search against Independent Distributions on an AND-OR Tree (1709.07358v1)

Published 21 Sep 2017 in cs.DS and cs.AI

Abstract: Suzuki and Niida (Ann. Pure. Appl. Logic, 2015) showed the following results on independent distributions (IDs) on an AND-OR tree, where they took only depth-first algorithms into consideration. (1) Among IDs such that probability of the root having value 0 is fixed as a given r such that 0 < r < 1, if d is a maximizer of cost of the best algorithm then d is an independent and identical distribution (IID). (2) Among all IDs, if d is a maximizer of cost of the best algorithm then d is an IID. In the case where non-depth-first algorithms are taken into consideration, the counter parts of (1) and (2) are left open in the above work. Peng et al. (Inform. Process. Lett., 2017) extended (1) and (2) to multi-branching trees, where in (2) they put an additional hypothesis on IDs that probability of the root having value 0 is neither 0 nor 1. We give positive answers for the two questions of Suzuki-Niida. A key to the proof is that if ID d achieves the equilibrium among IDs then we can chose an algorithm of the best cost against d from depth-first algorithms. In addition, we extend the result of Peng et al. to the case where non-depth-first algorithms are taken into consideration.

Citations (6)

Summary

We haven't generated a summary for this paper yet.