Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A PAC-Bayesian Analysis of Randomized Learning with Application to Stochastic Gradient Descent (1709.06617v5)

Published 19 Sep 2017 in cs.LG

Abstract: We study the generalization error of randomized learning algorithms -- focusing on stochastic gradient descent (SGD) -- using a novel combination of PAC-Bayes and algorithmic stability. Importantly, our generalization bounds hold for all posterior distributions on an algorithm's random hyperparameters, including distributions that depend on the training data. This inspires an adaptive sampling algorithm for SGD that optimizes the posterior at runtime. We analyze this algorithm in the context of our generalization bounds and evaluate it on a benchmark dataset. Our experiments demonstrate that adaptive sampling can reduce empirical risk faster than uniform sampling while also improving out-of-sample accuracy.

Citations (78)

Summary

We haven't generated a summary for this paper yet.