Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incorrigibility in the CIRL Framework (1709.06275v2)

Published 19 Sep 2017 in cs.AI

Abstract: A value learning system has incentives to follow shutdown instructions, assuming the shutdown instruction provides information (in the technical sense) about which actions lead to valuable outcomes. However, this assumption is not robust to model mis-specification (e.g., in the case of programmer errors). We demonstrate this by presenting some Supervised POMDP scenarios in which errors in the parameterized reward function remove the incentive to follow shutdown commands. These difficulties parallel those discussed by Soares et al. (2015) in their paper on corrigibility. We argue that it is important to consider systems that follow shutdown commands under some weaker set of assumptions (e.g., that one small verified module is correctly implemented; as opposed to an entire prior probability distribution and/or parameterized reward function). We discuss some difficulties with simple ways to attempt to attain these sorts of guarantees in a value learning framework.

Citations (24)

Summary

We haven't generated a summary for this paper yet.