Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite Sample Guarantees for PCA in Non-Isotropic and Data-Dependent Noise (1709.06255v1)

Published 19 Sep 2017 in stat.ML, cs.IT, and math.IT

Abstract: This work obtains novel finite sample guarantees for Principal Component Analysis (PCA). These hold even when the corrupting noise is non-isotropic, and a part (or all of it) is data-dependent. Because of the latter, in general, the noise and the true data are correlated. The results in this work are a significant improvement over those given in our earlier work where this "correlated-PCA" problem was first studied. In fact, in certain regimes, our results imply that the sample complexity required to achieve subspace recovery error that is a constant fraction of the noise level is near-optimal. Useful corollaries of our result include guarantees for PCA in sparse data-dependent noise and for PCA with missing data. An important application of the former is in proving correctness of the subspace update step of a popular online algorithm for dynamic robust PCA.

Citations (21)

Summary

We haven't generated a summary for this paper yet.