Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Disordered Topological Phases by Statistical Recovery of Symmetry (1709.05790v3)

Published 18 Sep 2017 in cond-mat.dis-nn, cond-mat.stat-mech, cond-mat.supr-con, and stat.ML

Abstract: In this letter, we apply the artificial neural network in a supervised manner to map out the quantum phase diagram of disordered topological superconductor in class DIII. Given the disorder that keeps the discrete symmetries of the ensemble as a whole, translational symmetry which is broken in the quasiparticle distribution individually is recovered statistically by taking an ensemble average. By using this, we classify the phases by the artificial neural network that learned the quasiparticle distribution in the clean limit, and show that the result is totally consistent with the calculation by the transfer matrix method or noncommutative geometry approach. If all three phases, namely the $\mathbb{Z}_2$, trivial, and the thermal metal phases appear in the clean limit, the machine can classify them with high confidence over the entire phase diagram. If only the former two phases are present, we find that the machine remains confused in the certain region, leading us to conclude the detection of the unknown phase which is eventually identified as the thermal metal phase. In our method, only the first moment of the quasiparticle distribution is used for input, but application to a wider variety of systems is expected by the inclusion of higher moments.

Citations (55)

Summary

We haven't generated a summary for this paper yet.