Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Road Friction Estimation for Connected Vehicles using Supervised Machine Learning (1709.05379v1)

Published 15 Sep 2017 in cs.LG and stat.ML

Abstract: In this paper, the problem of road friction prediction from a fleet of connected vehicles is investigated. A framework is proposed to predict the road friction level using both historical friction data from the connected cars and data from weather stations, and comparative results from different methods are presented. The problem is formulated as a classification task where the available data is used to train three machine learning models including logistic regression, support vector machine, and neural networks to predict the friction class (slippery or non-slippery) in the future for specific road segments. In addition to the friction values, which are measured by moving vehicles, additional parameters such as humidity, temperature, and rainfall are used to obtain a set of descriptive feature vectors as input to the classification methods. The proposed prediction models are evaluated for different prediction horizons (0 to 120 minutes in the future) where the evaluation shows that the neural networks method leads to more stable results in different conditions.

Citations (28)

Summary

We haven't generated a summary for this paper yet.