Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Coordinate Minimization of Convex Piecewise-Affine Functions (1709.04989v1)

Published 14 Sep 2017 in math.OC and cs.CV

Abstract: A popular class of algorithms to optimize the dual LP relaxation of the discrete energy minimization problem (a.k.a.\ MAP inference in graphical models or valued constraint satisfaction) are convergent message-passing algorithms, such as max-sum diffusion, TRW-S, MPLP and SRMP. These algorithms are successful in practice, despite the fact that they are a version of coordinate minimization applied to a convex piecewise-affine function, which is not guaranteed to converge to a global minimizer. These algorithms converge only to a local minimizer, characterized by local consistency known from constraint programming. We generalize max-sum diffusion to a version of coordinate minimization applicable to an arbitrary convex piecewise-affine function, which converges to a local consistency condition. This condition can be seen as the sign relaxation of the global optimality condition.

Citations (1)

Summary

We haven't generated a summary for this paper yet.