Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complete non-compact G2-manifolds from asymptotically conical Calabi-Yau 3-folds (1709.04904v4)

Published 14 Sep 2017 in math.DG and hep-th

Abstract: We develop a powerful new analytic method to construct complete non-compact G2-manifolds, i.e. Riemannian 7-manifolds (M,g) whose holonomy group is the compact exceptional Lie group G2. Our construction starts with a complete non-compact asymptotically conical Calabi-Yau 3-fold B and a circle bundle M over B satisfying a necessary topological condition. Our method then produces a 1-parameter family of circle-invariant complete G2-metrics on M that collapses to the original Calabi-Yau metric on the base B as the parameter converges to 0. The G2-metrics we construct have controlled asymptotic geometry at infinity, so-called asymptotically locally conical (ALC) metrics, and are the natural higher-dimensional analogues of the ALF metrics that are well known in 4-dimensional hyperk\"ahler geometry. We give two illustrations of the strength of our method. Firstly we use it to construct infinitely many diffeomorphism types of complete non-compact simply connected G2-manifolds; previously only a handful of such diffeomorphism types was known. Secondly we use it to prove the existence of continuous families of complete non-compact G2-metrics of arbitrarily high dimension; previously only rigid or 1-parameter families of complete non-compact G2-metrics were known.

Summary

We haven't generated a summary for this paper yet.