Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On proximal mappings with Young functions in uniformly convex Banach spaces (1709.04700v3)

Published 14 Sep 2017 in math.FA and math.OC

Abstract: It is well known in convex analysis that proximal mappings on Hilbert spaces are $1$-Lipschitz. In the present paper we show that proximal mappings on uniformly convex Banach spaces are uniformly continuous on bounded sets. Moreover, we introduce a new general proximal mapping whose regularization term is given as a composition of a Young function and the norm, and formulate our results at this level of generality. It is our aim to obtain the corresponding modulus of uniform continuity explicitly in terms of a modulus of uniform convexity of the norm and of moduli witnessing properties of the Young function. We also derive several quantitative results on uniform convexity, which may be of interest on their own.

Summary

We haven't generated a summary for this paper yet.