Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
103 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
50 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Asymptotic Bayesian Generalization Error in Latent Dirichlet Allocation and Stochastic Matrix Factorization (1709.04212v8)

Published 13 Sep 2017 in math.ST, cs.LG, stat.ML, and stat.TH

Abstract: Latent Dirichlet allocation (LDA) is useful in document analysis, image processing, and many information systems; however, its generalization performance has been left unknown because it is a singular learning machine to which regular statistical theory can not be applied. Stochastic matrix factorization (SMF) is a restricted matrix factorization in which matrix factors are stochastic; the column of the matrix is in a simplex. SMF is being applied to image recognition and text mining. We can understand SMF as a statistical model by which a stochastic matrix of given data is represented by a product of two stochastic matrices, whose generalization performance has also been left unknown because of non-regularity. In this paper, by using an algebraic and geometric method, we show the analytic equivalence of LDA and SMF, both of which have the same real log canonical threshold (RLCT), resulting in that they asymptotically have the same Bayesian generalization error and the same log marginal likelihood. Moreover, we derive the upper bound of the RLCT and prove that it is smaller than the dimension of the parameter divided by two, hence the Bayesian generalization errors of them are smaller than those of regular statistical models.

Citations (5)

Summary

We haven't generated a summary for this paper yet.