Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Perspective on the Average Mixing Matrix (1709.03591v1)

Published 11 Sep 2017 in math.CO and quant-ph

Abstract: We consider the continuous-time quantum walk defined on the adjacency matrix of a graph. At each instant, the walk defines a mixing matrix which is doubly-stochastic. The average of the mixing matrices contains relevant information about the quantum walk and about the graph. We show that it is the matrix of transformation of the orthogonal projection onto the commutant algebra of the adjacency matrix, restricted to diagonal matrices. Using this formulation of the average mixing matrix, we find connections between its rank and automorphisms of the graph.

Summary

We haven't generated a summary for this paper yet.