Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
202 tokens/sec
2000 character limit reached

Optimal non-asymptotic bound of the Ruppert-Polyak averaging without strong convexity (1709.03342v1)

Published 11 Sep 2017 in math.ST and stat.TH

Abstract: This paper is devoted to the non-asymptotic control of the mean-squared error for the Ruppert-Polyak stochastic averaged gradient descent introduced in the seminal contributions of [Rup88] and [PJ92]. In our main results, we establish non-asymptotic tight bounds (optimal with respect to the Cramer-Rao lower bound) in a very general framework that includes the uniformly strongly convex case as well as the one where the function f to be minimized satisfies a weaker Kurdyka-Lojiasewicz-type condition [Loj63, Kur98]. In particular, it makes it possible to recover some pathological examples such as on-line learning for logistic regression (see [Bac14]) and recursive quan- tile estimation (an even non-convex situation).

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.