Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The complexity of cake cutting with unequal shares (1709.03152v2)

Published 10 Sep 2017 in cs.DM

Abstract: An unceasing problem of our prevailing society is the fair division of goods. The problem of proportional cake cutting focuses on dividing a heterogeneous and divisible resource, the cake, among $n$ players who value pieces according to their own measure function. The goal is to assign each player a not necessarily connected part of the cake that the player evaluates at least as much as her proportional share. In this paper, we investigate the problem of proportional division with unequal shares, where each player is entitled to receive a predetermined portion of the cake. Our main contribution is threefold. First we present a protocol for integer demands that delivers a proportional solution in fewer queries than all known algorithms. Then we show that our protocol is asymptotically the fastest possible by giving a matching lower bound. Finally, we turn to irrational demands and solve the proportional cake cutting problem by reducing it to the same problem with integer demands only. All results remain valid in a highly general cake cutting model, which can be of independent interest.

Citations (26)

Summary

We haven't generated a summary for this paper yet.