Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform generation of random graphs with power-law degree sequences (1709.02674v2)

Published 8 Sep 2017 in math.CO and cs.DS

Abstract: We give a linear-time algorithm that approximately uniformly generates a random simple graph with a power-law degree sequence whose exponent is at least 2.8811. While sampling graphs with power-law degree sequence of exponent at least 3 is fairly easy, and many samplers work efficiently in this case, the problem becomes dramatically more difficult when the exponent drops below 3; ours is the first provably practicable sampler for this case. We also show that with an appropriate rejection scheme, our algorithm can be tuned into an exact uniform sampler. The running time of the exact sampler is O(n{2.107}) with high probability, and O(n{4.081}) in expectation.

Citations (21)

Summary

We haven't generated a summary for this paper yet.