Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond Views: Measuring and Predicting Engagement in Online Videos (1709.02541v4)

Published 8 Sep 2017 in cs.SI and cs.HC

Abstract: The share of videos in the internet traffic has been growing, therefore understanding how videos capture attention on a global scale is also of growing importance. Most current research focus on modeling the number of views, but we argue that video engagement, or time spent watching is a more appropriate measure for resource allocation problems in attention, networking, and promotion activities. In this paper, we present a first large-scale measurement of video-level aggregate engagement from publicly available data streams, on a collection of 5.3 million YouTube videos published over two months in 2016. We study a set of metrics including time and the average percentage of a video watched. We define a new metric, relative engagement, that is calibrated against video properties and strongly correlate with recognized notions of quality. Moreover, we find that engagement measures of a video are stable over time, thus separating the concerns for modeling engagement and those for popularity -- the latter is known to be unstable over time and driven by external promotions. We also find engagement metrics predictable from a cold-start setup, having most of its variance explained by video context, topics and channel information -- R2=0.77. Our observations imply several prospective uses of engagement metrics -- choosing engaging topics for video production, or promoting engaging videos in recommender systems.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com