Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Tight Lower Bound for Counting Hamiltonian Cycles via Matrix Rank (1709.02311v2)

Published 7 Sep 2017 in cs.DS, cs.CC, math.CO, and math.RT

Abstract: For even $k$, the matchings connectivity matrix $\mathbf{M}_k$ encodes which pairs of perfect matchings on $k$ vertices form a single cycle. Cygan et al. (STOC 2013) showed that the rank of $\mathbf{M}_k$ over $\mathbb{Z}_2$ is $\Theta(\sqrt 2k)$ and used this to give an $O*((2+\sqrt{2}){\mathsf{pw}})$ time algorithm for counting Hamiltonian cycles modulo $2$ on graphs of pathwidth $\mathsf{pw}$. The same authors complemented their algorithm by an essentially tight lower bound under the Strong Exponential Time Hypothesis (SETH). This bound crucially relied on a large permutation submatrix within $\mathbf{M}_k$, which enabled a "pattern propagation" commonly used in previous related lower bounds, as initiated by Lokshtanov et al. (SODA 2011). We present a new technique for a similar pattern propagation when only a black-box lower bound on the asymptotic rank of $\mathbf{M}_k$ is given; no stronger structural insights such as the existence of large permutation submatrices in $\mathbf{M}_k$ are needed. Given appropriate rank bounds, our technique yields lower bounds for counting Hamiltonian cycles (also modulo fixed primes $p$) parameterized by pathwidth. To apply this technique, we prove that the rank of $\mathbf{M}_k$ over the rationals is $4k / \mathrm{poly}(k)$. We also show that the rank of $\mathbf{M}_k$ over $\mathbb{Z}_p$ is $\Omega(1.97k)$ for any prime $p\neq 2$ and even $\Omega(2.15k)$ for some primes. As a consequence, we obtain that Hamiltonian cycles cannot be counted in time $O*((6-\epsilon){\mathsf{pw}})$ for any $\epsilon>0$ unless SETH fails. This bound is tight due to a $O*(6{\mathsf{pw}})$ time algorithm by Bodlaender et al. (ICALP 2013). Under SETH, we also obtain that Hamiltonian cycles cannot be counted modulo primes $p\neq 2$ in time $O*(3.97\mathsf{pw})$, indicating that the modulus can affect the complexity in intricate ways.

Citations (24)

Summary

We haven't generated a summary for this paper yet.