Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Foundation for a series of efficient simulation algorithms (1709.01826v1)

Published 6 Sep 2017 in cs.LO

Abstract: Compute the coarsest simulation preorder included in an initial preorder is used to reduce the resources needed to analyze a given transition system. This technique is applied on many models like Kripke structures, labeled graphs, labeled transition systems or even word and tree automata. Let (Q, $\rightarrow$) be a given transition system and Rinit be an initial preorder over Q. Until now, algorithms to compute Rsim , the coarsest simulation included in Rinit , are either memory efficient or time efficient but not both. In this paper we propose the foundation for a series of efficient simulation algorithms with the introduction of the notion of maximal transitions and the notion of stability of a preorder with respect to a coarser one. As an illustration we solve an open problem by providing the first algorithm with the best published time complexity, O(|Psim |.|$\rightarrow$|), and a bit space complexity in O(|Psim |2. log(|Psim |) + |Q|. log(|Q|)), with Psim the partition induced by Rsim.

Citations (10)

Summary

We haven't generated a summary for this paper yet.