Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fine-tuning deep CNN models on specific MS COCO categories (1709.01476v1)

Published 5 Sep 2017 in cs.CV, cs.AI, and cs.LG

Abstract: Fine-tuning of a deep convolutional neural network (CNN) is often desired. This paper provides an overview of our publicly available py-faster-rcnn-ft software library that can be used to fine-tune the VGG_CNN_M_1024 model on custom subsets of the Microsoft Common Objects in Context (MS COCO) dataset. For example, we improved the procedure so that the user does not have to look for suitable image files in the dataset by hand which can then be used in the demo program. Our implementation randomly selects images that contain at least one object of the categories on which the model is fine-tuned.

Citations (11)

Summary

We haven't generated a summary for this paper yet.