Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

When can Multi-Site Datasets be Pooled for Regression? Hypothesis Tests, $\ell_2$-consistency and Neuroscience Applications (1709.00640v1)

Published 2 Sep 2017 in stat.ME and stat.ML

Abstract: Many studies in biomedical and health sciences involve small sample sizes due to logistic or financial constraints. Often, identifying weak (but scientifically interesting) associations between a set of predictors and a response necessitates pooling datasets from multiple diverse labs or groups. While there is a rich literature in statistical machine learning to address distributional shifts and inference in multi-site datasets, it is less clear ${\it when}$ such pooling is guaranteed to help (and when it does not) -- independent of the inference algorithms we use. In this paper, we present a hypothesis test to answer this question, both for classical and high dimensional linear regression. We precisely identify regimes where pooling datasets across multiple sites is sensible, and how such policy decisions can be made via simple checks executable on each site before any data transfer ever happens. With a focus on Alzheimer's disease studies, we present empirical results showing that in regimes suggested by our analysis, pooling a local dataset with data from an international study improves power.

Citations (11)

Summary

We haven't generated a summary for this paper yet.