Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Dynamical Quantum Phase Transitions in Systems with Continuous Symmetry Breaking (1709.00421v1)

Published 1 Sep 2017 in cond-mat.stat-mech and quant-ph

Abstract: Interacting many-body systems that are driven far away from equilibrium can exhibit phase transitions between dynamically emerging quantum phases, which manifest as singularities in the Loschmidt echo. Whether and under which conditions such dynamical transitions occur in higher-dimensional systems with spontaneously broken continuous symmetries is largely elusive thus far. Here, we study the dynamics of the Loschmidt echo in the three dimensional O(N) model following a quantum quench from a symmetry breaking initial state. The O(N) model exhibits a dynamical transition in the asymptotic steady state, separating two phases with a finite and vanishing order parameter, that is associated with the broken symmetry. We analytically calculate the rate function of the Loschmidt echo and find that it exhibits periodic kink singularities when this dynamical steady-state transition is crossed. The singularities arise exactly at the zero-crossings of the oscillating order parameter. As a consequence, the appearance of the kink singularities in the transient dynamics is directly linked to a dynamical transition in the order parameter. Furthermore, we argue, that our results for dynamical quantum phase transitions in the O(N) model are general and apply to generic systems with continuous symmetry breaking.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.