Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Comparative Study of Matrix Factorization and Random Walk with Restart in Recommender Systems (1708.09088v2)

Published 30 Aug 2017 in cs.IR

Abstract: Between matrix factorization or Random Walk with Restart (RWR), which method works better for recommender systems? Which method handles explicit or implicit feedback data better? Does additional information help recommendation? Recommender systems play an important role in many e-commerce services such as Amazon and Netflix to recommend new items to a user. Among various recommendation strategies, collaborative filtering has shown good performance by using rating patterns of users. Matrix factorization and random walk with restart are the most representative collaborative filtering methods. However, it is still unclear which method provides better recommendation performance despite their extensive utility. In this paper, we provide a comparative study of matrix factorization and RWR in recommender systems. We exactly formulate each correspondence of the two methods according to various tasks in recommendation. Especially, we newly devise an RWR method using global bias term which corresponds to a matrix factorization method using biases. We describe details of the two methods in various aspects of recommendation quality such as how those methods handle cold-start problem which typically happens in collaborative filtering. We extensively perform experiments over real-world datasets to evaluate the performance of each method in terms of various measures. We observe that matrix factorization performs better with explicit feedback ratings while RWR is better with implicit ones. We also observe that exploiting global popularities of items is advantageous in the performance and that side information produces positive synergy with explicit feedback but gives negative effects with implicit one.

Citations (33)

Summary

We haven't generated a summary for this paper yet.