Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Block-Simultaneous Direction Method of Multipliers: A proximal primal-dual splitting algorithm for nonconvex problems with multiple constraints (1708.09066v1)

Published 30 Aug 2017 in math.OC, cs.CV, and cs.LG

Abstract: We introduce a generalization of the linearized Alternating Direction Method of Multipliers to optimize a real-valued function $f$ of multiple arguments with potentially multiple constraints $g_\circ$ on each of them. The function $f$ may be nonconvex as long as it is convex in every argument, while the constraints $g_\circ$ need to be convex but not smooth. If $f$ is smooth, the proposed Block-Simultaneous Direction Method of Multipliers (bSDMM) can be interpreted as a proximal analog to inexact coordinate descent methods under constraints. Unlike alternative approaches for joint solvers of multiple-constraint problems, we do not require linear operators $L$ of a constraint function $g(L\ \cdot)$ to be invertible or linked between each other. bSDMM is well-suited for a range of optimization problems, in particular for data analysis, where $f$ is the likelihood function of a model and $L$ could be a transformation matrix describing e.g. finite differences or basis transforms. We apply bSDMM to the Non-negative Matrix Factorization task of a hyperspectral unmixing problem and demonstrate convergence and effectiveness of multiple constraints on both matrix factors. The algorithms are implemented in python and released as an open-source package.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.