Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Circle and Sphere Packing (1708.08906v1)

Published 29 Aug 2017 in cs.DS

Abstract: In this paper we consider the Online Bin Packing Problem in three variants: Circles in Squares, Circles in Isosceles Right Triangles, and Spheres in Cubes. The two first ones receive an online sequence of circles (items) of different radii while the third one receive an online sequence of spheres (items) of different radii, and they want to pack the items into the minimum number of unit squares, isosceles right triangles of leg length one, and unit cubes, respectively. For Online Circle Packing in Squares, we improve the previous best-known competitive ratio for the bounded space version, when at most a constant number of bins can be open at any given time, from 2.439 to 2.3536. For Online Circle Packing in Isosceles Right Triangles and Online Sphere Packing in Cubes we show bounded space algorithms of asymptotic competitive ratios 2.5490 and 3.5316, respectively, as well as lower bounds of 2.1193 and 2.7707 on the competitive ratio of any online bounded space algorithm for these two problems. We also considered the online unbounded space variant of these three problems which admits a small reorganization of the items inside the bin after their packing, and we present algorithms of competitive ratios 2.3105, 2.5094, and 3.5146 for Circles in Squares, Circles in Isosceles Right Triangles, and Spheres in Cubes, respectively.

Citations (7)

Summary

We haven't generated a summary for this paper yet.