Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linking resource selection and step selection models for habitat preferences in animals (1708.08426v2)

Published 28 Aug 2017 in q-bio.QM and q-bio.PE

Abstract: The two dominant approaches for the analysis of species-habitat associations in animals have been shown to reach divergent conclusions. Models fitted from the viewpoint of an individual (step selection functions), once scaled up, do not agree with models fitted from a population viewpoint (resource selection functions). We explain this fundamental incompatibility, and propose a solution by introducing to the animal movement field a novel use for the well-known family of Markov chain Monte Carlo (MCMC) algorithms. By design, the step selection rules of MCMC lead to a steady-state distribution that coincides with a given underlying function: the target distribution. We therefore propose an analogy between the movements of an animal and the movements of a MCMC sampler, to guarantee convergence of the step selection rules to the parameters underlying the population's utilisation distribution. We introduce a rejection-free MCMC algorithm, the local Gibbs sampler, that better resembles real animal movement, and discuss the wide range of biological assumptions that it can accommodate. We illustrate our method with simulations on a known utilisation distribution, and show theoretically and empirically that locations simulated from the local Gibbs sampler give rise to the correct resource selection function. Using simulated data, we demonstrate how this framework can be used to estimate resource selection and movement parameters.

Summary

We haven't generated a summary for this paper yet.