Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Backward Simulation of Stochastic Process using a Time Reverse Monte Carlo method (1708.08045v4)

Published 27 Aug 2017 in physics.data-an, cond-mat.dis-nn, cond-mat.stat-mech, nlin.CD, and stat.ME

Abstract: The "backward simulation" of a stochastic process is defined as the stochastic dynamics that trace a time-reversed path from the target region to the initial configuration. If the probabilities calculated by the original simulation are easily restored from those obtained by backward dynamics, we can use it as a computational tool. It is shown that the naive approach to backward simulation does not work as expected. As a remedy, the Time Reverse Monte Carlo method (TRMC) based on the ideas of Sequential Importance Sampling (SIS) and Sequential Monte Carlo (SMC) is proposed and successfully tested with a stochastic typhoon model and the Lorenz 96 model. TRMC with SMC, which contains resampling steps, is shown to be more efficient for simulations with a larger number of time steps. A limitation of TRMC and its relation to the Bayes formula are also discussed.

Summary

We haven't generated a summary for this paper yet.