Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The geometry of generalized Lamé equation, I (1708.05306v1)

Published 17 Aug 2017 in math.CA

Abstract: In this paper, we prove that the spectral curve $\Gamma_{\mathbf{n}}$ of the generalized Lam\'{e} equation with the Treibich-Verdier potential \begin{equation*} y{\prime \prime }(z)=\bigg[ \sum_{k=0}{3}n_{k}(n_{k}+1)\wp(z+\tfrac{% \omega_{k}}{2}|\tau)+B\bigg] y(z),\text{ \ }n_{k}\in \mathbb{Z}{\geq0} \end{equation*} can be embedded into the symmetric space Sym${N}E{\tau}$ of the $N$-th copy of the torus $E_{\tau}$, where $N=\sum n_{k}$. This embedding induces an addition map $\sigma_{\mathbf{n}}(\cdot|\tau)$ from $\Gamma_{\mathbf{n}}$ onto $E_{\tau}$. The main result is to prove that the degree of $\sigma {% \mathbf{n}}(\cdot|\tau)$ is equal to% \begin{equation*} \sum{k=0}{3}n_{k}(n_{k}+1)/2. \end{equation*} This is the first step toward constructing the premodular form associated with this generalized Lam\'{e} equation.

Summary

We haven't generated a summary for this paper yet.