Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visualizing and Exploring Dynamic High-Dimensional Datasets with LION-tSNE (1708.04983v1)

Published 16 Aug 2017 in cs.AI

Abstract: T-distributed stochastic neighbor embedding (tSNE) is a popular and prize-winning approach for dimensionality reduction and visualizing high-dimensional data. However, tSNE is non-parametric: once visualization is built, tSNE is not designed to incorporate additional data into existing representation. It highly limits the applicability of tSNE to the scenarios where data are added or updated over time (like dashboards or series of data snapshots). In this paper we propose, analyze and evaluate LION-tSNE (Local Interpolation with Outlier coNtrol) - a novel approach for incorporating new data into tSNE representation. LION-tSNE is based on local interpolation in the vicinity of training data, outlier detection and a special outlier mapping algorithm. We show that LION-tSNE method is robust both to outliers and to new samples from existing clusters. We also discuss multiple possible improvements for special cases. We compare LION-tSNE to a comprehensive list of possible benchmark approaches that include multiple interpolation techniques, gradient descent for new data, and neural network approximation.

Citations (13)

Summary

We haven't generated a summary for this paper yet.