Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Greedy and Evolutionary Algorithms for Mining Relationship-Based Access Control Policies (1708.04749v4)

Published 16 Aug 2017 in cs.CR

Abstract: Relationship-based access control (ReBAC) provides a high level of expressiveness and flexibility that promotes security and information sharing. We formulate ReBAC as an object-oriented extension of attribute-based access control (ABAC) in which relationships are expressed using fields that refer to other objects, and path expressions are used to follow chains of relationships between objects. ReBAC policy mining algorithms have potential to significantly reduce the cost of migration from legacy access control systems to ReBAC, by partially automating the development of a ReBAC policy from an existing access control policy and attribute data. This paper presents two algorithms for mining ReBAC policies from access control lists (ACLs) and attribute data represented as an object model: a greedy algorithm guided by heuristics, and a grammar-based evolutionary algorithm. An evaluation of the algorithms on four sample policies and two large case studies demonstrates their effectiveness.

Citations (19)

Summary

We haven't generated a summary for this paper yet.