Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved second-order evaluation complexity for unconstrained nonlinear optimization using high-order regularized models (1708.04044v1)

Published 14 Aug 2017 in math.OC and cs.CC

Abstract: The unconstrained minimization of a sufficiently smooth objective function $f(x)$ is considered, for which derivatives up to order $p$, $p\geq 2$, are assumed to be available. An adaptive regularization algorithm is proposed that uses Taylor models of the objective of order $p$ and that is guaranteed to find a first- and second-order critical point in at most $O \left(\max\left( \epsilon_1{-\frac{p+1}{p}}, \epsilon_2{-\frac{p+1}{p-1}} \right) \right)$ function and derivatives evaluations, where $\epsilon_1$ and $\epsilon_2 >0$ are prescribed first- and second-order optimality tolerances. Our approach extends the method in Birgin et al. (2016) to finding second-order critical points, and establishes the novel complexity bound for second-order criticality under identical problem assumptions as for first-order, namely, that the $p$-th derivative tensor is Lipschitz continuous and that $f(x)$ is bounded from below. The evaluation-complexity bound for second-order criticality improves on all such known existing results.

Citations (24)

Summary

We haven't generated a summary for this paper yet.