Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global Frobenius Liftability I (1708.03777v2)

Published 12 Aug 2017 in math.AG

Abstract: We formulate a conjecture characterizing smooth projective varieties in positive characteristic whose Frobenius morphism can be lifted modulo $p2$ - we expect that such varieties, after a finite \'etale cover, admit a toric fibration over an ordinary abelian variety. We prove that this assertion implies a conjecture of Occhetta and Wi\'sniewski, which states that in characteristic zero a smooth image of a projective toric variety is a toric variety. To this end we analyse the behaviour of toric varieties in families showing some generization and specialization results. Furthermore, we prove a positive characteristic analogue of Winkelmann's theorem on varieties with trivial logarithmic tangent bundle (generalising a result of Mehta-Srinivas), and thus obtaining an important special case of our conjecture. Finally, using deformations of rational curves we verify our conjecture for homogeneous spaces, solving a problem posed by Buch-Thomsen-Lauritzen-Mehta.

Summary

We haven't generated a summary for this paper yet.