Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
164 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Porting of the DBCSR library for Sparse Matrix-Matrix Multiplications to Intel Xeon Phi systems (1708.03604v2)

Published 11 Aug 2017 in cs.DC

Abstract: Multiplication of two sparse matrices is a key operation in the simulation of the electronic structure of systems containing thousands of atoms and electrons. The highly optimized sparse linear algebra library DBCSR (Distributed Block Compressed Sparse Row) has been specifically designed to efficiently perform such sparse matrix-matrix multiplications. This library is the basic building block for linear scaling electronic structure theory and low scaling correlated methods in CP2K. It is parallelized using MPI and OpenMP, and can exploit GPU accelerators by means of CUDA. We describe a performance comparison of DBCSR on systems with Intel Xeon Phi Knights Landing (KNL) processors, with respect to systems with Intel Xeon CPUs (including systems with GPUs). We find that the DBCSR on Cray XC40 KNL-based systems is 11%-14% slower than on a hybrid Cray XC50 with Nvidia P100 cards, at the same number of nodes. When compared to a Cray XC40 system equipped with dual-socket Intel Xeon CPUs, the KNL is up to 24% faster.

Citations (6)

Summary

We haven't generated a summary for this paper yet.