Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Balanced data assimilation for highly-oscillatory mechanical systems (1708.03570v3)

Published 11 Aug 2017 in math.NA and cs.NA

Abstract: Data assimilation algorithms are used to estimate the states of a dynamical system using partial and noisy observations. The ensemble Kalman filter has become a popular data assimilation scheme due to its simplicity and robustness for a wide range of application areas. Nevertheless, the ensemble Kalman filter also has limitations due to its inherent Gaussian and linearity assumptions. These limitations can manifest themselves in dynamically inconsistent state estimates. We investigate this issue in this paper for highly oscillatory Hamiltonian systems with a dynamical behavior which satisfies certain balance relations. We first demonstrate that the standard ensemble Kalman filter can lead to estimates which do not satisfy those balance relations, ultimately leading to filter divergence. We also propose two remedies for this phenomenon in terms of blended time-stepping schemes and ensemble-based penalty methods. The effect of these modifications to the standard ensemble Kalman filter are discussed and demonstrated numerically for two model scenarios. First, we consider balanced motion for highly oscillatory Hamiltonian systems and, second, we investigate thermally embedded highly oscillatory Hamiltonian systems. The first scenario is relevant for applications from meteorology while the second scenario is relevant for applications of data assimilation to molecular dynamics.

Citations (6)

Summary

We haven't generated a summary for this paper yet.