Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

What matters in a transferable neural network model for relation classification in the biomedical domain? (1708.03446v2)

Published 11 Aug 2017 in cs.CL

Abstract: Lack of sufficient labeled data often limits the applicability of advanced machine learning algorithms to real life problems. However efficient use of Transfer Learning (TL) has been shown to be very useful across domains. TL utilizes valuable knowledge learned in one task (source task), where sufficient data is available, to the task of interest (target task). In biomedical and clinical domain, it is quite common that lack of sufficient training data do not allow to fully exploit machine learning models. In this work, we present two unified recurrent neural models leading to three transfer learning frameworks for relation classification tasks. We systematically investigate effectiveness of the proposed frameworks in transferring the knowledge under multiple aspects related to source and target tasks, such as, similarity or relatedness between source and target tasks, and size of training data for source task. Our empirical results show that the proposed frameworks in general improve the model performance, however these improvements do depend on aspects related to source and target tasks. This dependence then finally determine the choice of a particular TL framework.

Citations (9)

Summary

We haven't generated a summary for this paper yet.