Fractional powers of the parabolic Hermite operator. Regularity properties (1708.02788v1)
Abstract: Let $\mathcal{L}= \partial_t- \Delta_x+|x|2$. Consider its Poisson semigroup $e{-y\sqrt{\mathcal{L}}}$. For $\alpha >0$ define the Parabolic Hermite-Zygmund spaces $$ \Lambda\alpha_{\mathcal{L}}=\left{f: :f\in L\infty(\mathbb{R}{n+1}):\; {\rm and} :\; \left|\partial_yk e{-y\sqrt{\mathcal{L}}} f \right|{L\infty(\mathbb{R}{n+1})}\leq C_k y{-k+\alpha},\;: {\rm with }\, k=[\alpha]+1, y>0. \right}, $$ with the obvious norm. It is shown that these spaces have a pointwise description of H\"older type. The fractional powers $\mathcal{L}{\pm \beta}$ are well defined in these spaces and the following regularity properties are proved: \begin{eqnarray*} \alpha, \beta >0, \quad |\mathcal{L}{-\beta} f|{ \Lambda{\alpha+2\beta}_{\mathcal{L}}}\le C |f|{ \Lambda\alpha{\mathcal{L}}}. \end{eqnarray*} \begin{eqnarray*} 0< 2\beta < \alpha, \quad |\mathcal{L}\beta f|{\Lambda{\mathcal{L}}{\alpha-2\beta}}\le C |f|{\Lambda\alpha{\mathcal{L}}}. \end{eqnarray*} Parallel results are obtained for the Hermite operator $- \Delta +|x|2.$ The proofs use in a fundamental way the semigroup definition of the operators $\mathcal{L}{\pm \beta}$ and $(-\Delta+|x|2){\pm \beta}$. The non-convolution structure of the operators produce an extra difficulty of the arguments.