Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequential Dual Deep Learning with Shape and Texture Features for Sketch Recognition (1708.02716v1)

Published 9 Aug 2017 in cs.CV

Abstract: Recognizing freehand sketches with high arbitrariness is greatly challenging. Most existing methods either ignore the geometric characteristics or treat sketches as handwritten characters with fixed structural ordering. Consequently, they can hardly yield high recognition performance even though sophisticated learning techniques are employed. In this paper, we propose a sequential deep learning strategy that combines both shape and texture features. A coded shape descriptor is exploited to characterize the geometry of sketch strokes with high flexibility, while the outputs of constitutional neural networks (CNN) are taken as the abstract texture feature. We develop dual deep networks with memorable gated recurrent units (GRUs), and sequentially feed these two types of features into the dual networks, respectively. These dual networks enable the feature fusion by another gated recurrent unit (GRU), and thus accurately recognize sketches invariant to stroke ordering. The experiments on the TU-Berlin data set show that our method outperforms the average of human and state-of-the-art algorithms even when significant shape and appearance variations occur.

Citations (13)

Summary

We haven't generated a summary for this paper yet.