2000 character limit reached
The canonical join complex for biclosed sets (1708.02580v5)
Published 8 Aug 2017 in math.CO
Abstract: The canonical join complex of a semidistributive lattice is a simplicial complex whose faces are canonical join representations of elements of the semidistributive lattice. We give a combinatorial classification of the faces of the canonical join complex of the lattice of biclosed sets of segments supported by a tree, as introduced by the third author and McConville. We also use our classification to describe the elements of the shard intersection order of the lattice of biclosed sets. As a consequence, we prove that this shard intersection order is a lattice.