Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 218 tok/s Pro
2000 character limit reached

Asymptotics for Hankel Determinants Associated to a Hermite Weight with a Varying Discontinuity (1708.02519v5)

Published 8 Aug 2017 in math-ph, math.CA, math.CV, math.MP, and math.PR

Abstract: We study $n\times n$ Hankel determinants constructed with moments of a Hermite weight with a Fisher-Hartwig singularity on the real line. We consider the case when the singularity is in the bulk and is both of root-type and jump-type. We obtain large $n$ asymptotics for these Hankel determinants, and we observe a critical transition when the size of the jumps varies with $n$. These determinants arise in the thinning of the generalised Gaussian unitary ensembles and in the construction of special function solutions of the Painlev\'e IV equation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.